

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 (Autonomous)

End Semester Examination – March / April 2024 Faculty: Science and Technology

Program: B.Sc. Code (BScGen03)
Program (Specific): Mathematics

Class: S.Y. B. Sc. (Regular)

Name of the Course: Linear Algebra

Time: 2 Hrs.

Semester : IV Course Type: Core Max. Marks : 35

Course Code: 23-MT-241

Set B

Instructions to the candidate:

1) All Sections are compulsory.

2) Figures to the right indicate full marks.

3) Draw a well labelled diagram wherever necessary.

SECTION-A

Q.1 Attempt any FIVE of the following.

 $[5 \times 2 = 10 \text{ Marks}]$

- i) Give two examples of matrices which are in the row echelon form.
- ii) Let V be a vector space. If u is a vector in V and k is a scalar such that $k \cdot u = 0$ then show that either k = 0 or u = 0.
- iii) Define Basis of a vector space.
- iv) Find the coordinate vector of $w=(2\,,\,5\,,\,-3)$ relative to the basis $e_1=(1\,,\,0\,,\,0)$, $e_2=(0\,,\,1\,,\,0)$, $e_3=(0\,,\,0\,,\,1)$ of \mathbb{R}^3
- v) Determine basis and dimension of the subspace W of \mathbb{R}^3 , where W = { $(x, y, z) \in \mathbb{R}^3 / x + y + z = 0$ }.
- vi) State Dimension Theorem for Linear Transformation
- vii) Let V , W be two vector spaces and let $T: V \to W$ be a linear transformation. Then prove that T(-u) = -T(u), for all u in V

SECTION-B

Q.2 Attempt any THREE of the following.

 $[3 \times 5 = 15 \text{ Marks}]$

i) Solve the following system of linear equations by Gauss Jordan

Page 1 of 2

Elimination method x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40.

- ii) Show that the set of vectors $S = \{ (1, 2), (1, 0) \}$ is a basis of \mathbb{R}^2 .
- iii) Prove that any two bases of a finite dimensional vector space V has same number of elements.
- iv) Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (2x, y) is linear a transformation.
- v) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T(x, y, z) = (x + y - z, x - 2y + z, -2x - 2y + 2z).$$

Which of the following vectors are in ker (T)?

(a)
$$u = (1, 2, 3)$$

(b)
$$v = (1, 2, 1)$$

(a)
$$u = (1, 2, 3)$$
 (b) $v = (1, 2, 1)$ (c) $w = (-1, 1, 2)$.

SECTION-C

Q.3 Attempt any TWO of the following.

 $[2 \times 5 = 10 \text{ Marks}]$

i) Reduce the following matrix A into reduced row echelon form, where

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 1 & 3 \\ 5 & 3 & 2 \\ 2 & 0 & 2 \end{bmatrix}.$$

- ii) Show that $W = \{ (x, y, z) \in \mathbb{R}^3 / x = 4y + z \}$ is a subspace of \mathbb{R}^3 .
- iii) Let $T: V \to W$ be a linear transformation. Then prove that
 - (a) The kernel of T is a subspace of V.
 - (b) The range of T is a subspace of W.